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Abstract

Research is being conducted to determine how distributed computations can be

mapped onto multiprocessors so as to minimize execution time. Instead of employ-

ing optimization techniques based on some abstract program/machine models, the

approach being investigated here (called "post-game analysis") is based on place-

ment heuristics which utilizes program execution history. Although initial exper-

iments have demonstrated that "post-game analysis" indeed discovered mappings

that exhibit significantly shorter execution times than the worst cases for the pro-

grams tested, three important issues remain to be addressed: i) the need to evaluate

the performance of placement heuristics against the "optimal" speed-up attainable,

ii) to find evidence to help explain why these heuristics work and iii) to develop

better heuristics by understanding how and why the basic set performed well. Par-

allel program execution was simulated using "Axe"--an integrated environment for

computation model description, processor architecture specification, discrete-time

simulation and automated data collection. Five groups of parameters are measured

representing different aspects in the concurrent execution environment: (i) overall

measurements, (ii) communication parameters, (iii) cpu utilization, (iv) cpu con-

tention and (v) dependencies between players. Two programs were simulated--a

"pipe-line" of players and a "divide-and-conquer" program skeleton. The results

showed that program execution time indeed correlated well with some of the pa-

rameters measured. It was also shown that "post-game" analysis achieved close to

96% optimal speed-up for both programs in most cases.
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1. Introduction

Research is being conducted to determine how distributed computations can be mapped

onto multiprocessors so as to minimize execution time. The class of programs being

considered here, falls under a subset of the Actor paradigm [Agha 85]. A computation is

expressed as a collection of autonomous executable modules known as players [Yan 86a].

They interact with one another via message passing. When a player receives a message, it

may perform user-programmed computations; send/wait for specific messages; or create

new players. The multiprocessors being considered consist of h.QmRgc.ng.o_ processing

elements (or sites) connected via physical communication links. The resource management

problem in this context involves mapping a _ concurrent computation to the

multiprocessor- as opposed to some other efforts that involve minimizing the average

turn-around time (or some other parameter) for a collection of unrelated tasks. By

(i) restricting ourselves to programs in which the number and type of players created

are independent of input data and system load and

(ii) forcing each player to reside in the site in which it was created for the whole

duration of the computation,

the mapping problem reduces to a placement problem: "In which site should a player be

placed after it is created?". The number of all possible solutions is finite, enumerable, but

extremely large.

Instead of formulating it as yet another optimization problem based on some abstract

program/machine models, the approach being investigated here (called "post-game

analysis") is based on placement heuristics which utilize program execution history [Yan

87b]. Figure 1-1 below gives a summary of how the "post-game " iteration framework

works:

1. The program is either executed or simulated.

2. Data gathered during simulation/execution is analyzed by a set of

heu- risics which assess relative merits to alternative

perturbations to the current mapping.

3. The perturbation given the highest merit is chosen -- from which

an al- temative mapping is generated

4. Go to step I unless some terminating condition is met.

Figure 1-1. The "Post-game Analysis" Iteration Framework
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Although initial experiments[Yan 87a]havedemonstratedthat "post-gameanalysis"
indeeddiscoveredmappingsthatexhibitsignificandyshorterexecutiontimesthantheworst

casesfor theprogramstested,threeimportantissuesremainto beaddressed: :
i) Performance Evaluation _ Just like many other heuristic approaches proposed to

solve combinatorially explosive problems, the initial experiments failed to

demonstrate how close the proposed mappings actually were to the "optimal". The

"optimal mapping", in this context, is defined as the mapping in which the given

program executes fastest on the given machine. Furthermore, unless the

"distribution" of execution time (over all mappings) is known, it is difficult to

assess whether the heuristics actually succeeded or it was "mere luck".

ii) Heuristics Development m "Post-game" analyzes data gathered during program

execution to discover bottlenecks in the system. It then make use of heuristics that

"reason" or "make guesses" to generate mappings which exhibit shorter execution

time than others. Although the parameters on which these heuristics were based

seemed intuitively reasonable, it remains to be shown that they actually describe

aspects of the system which directly translate/relate to execution time. A good

example involves the amount of "remote messages" -- messages that has to be

delivered over the communication network connecting different sites of the

multiprocessor. It will be shown later that in spite of popular belief, minimizing

this quantity does not necessary results lead to small execution times even when the

_ommunication links are slow[

iii) Control Strategy Development _ The "control strategy" being used in the "basic"

post-game analysis [Yan 87a] involves selecting the best and smallest possible

perturbation. After each iteration, only one of the players is moved to a new

location. Although the number of iterations needed to achieve convergence is still

small in comparison with the total number of possible assignments, efforts are

being made to reduce the number of iterations by relaxing the control strategy to

allow more than one player to be assigned to an alternative site. In order to make

this selection "intelligently", one must understand very well how and why and to

what limit do the heuristics reported earlier works.

In order to determine (i) which measurable parameters are actually related to execution

time; (ii) the inter-relationship between these parameters; and (iii) the distribution of

execution time over all possible placements and a range of communication costs, parallel

program execution was simulated using "Axe" [Yan 86b]. "Axe" provides an integrated

environment for computation model description, processor architecture specification,



discrete-timesimulation,automateddatacollectionaswellastheapplicationof "post-game"
heuristics.Communicationcostaswenasprogramparameterswerevaried.

Section2 gives anoverall descriptionof how theexperimentsweredesignedandthe

parametersmeasured.Eachexperimentinvolvesthesimulationof all possible placements

for a program with nine players executed on a multiprocessor with four sites completely

connected (over 11,000 possible placement configurations). Five groups of parameters are

measured representing different aspects in the concurrent execution environment: (i) overall

measurements, (ii) communication parameters, (iii) CPU utilization, (iv) CPU contention and

(v) dependencies between players. Two programs were simulated -- representing two

major classes of parallel computations. The players in the first benchmark can be

visualized as "service centers" in a "pipe-line". Messages carrying different requests

"flow" through each stage of the pipeline -- making different processing demands at the

site in which the player reside. Section 3 reports the preliminary findings for this

benchmark. It was found that the parameters that correlated best with execution time

describes the CPU contention at the busiest site. The results from the second benchmark is

described in section 4. This program is representative of the structure of many "divide-

and-conquer" algorithms. Players are organized as "nodes" at different levels of a "tree".

Requests generated at the root propagate down to the "branches" of the tree. Players at

higher levels have to "block" mad wait for replies from those at the lower levels. It was

discovered that the "dependency parameters" correlates much better than all the others. The

findings for both programs are summarized in section 5. The paper concludes by

evaluating the performance of the application of "post-game" analysis to these programs. It

is shown that "post-game" analysis achieved close to 96% optimal speed-up for both

programs in most cases.
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2. Designing the Experiments

2.1 B_nchmark Selection / Program Characterization

It would be desirable to have a set of programs with "different characteristics" to serve as

"benchmarks" for experiments of this sort. Unlike sequential programming however,

benchmarks for parallel/distributed computing are relatively difficult to come by:

i) There are not many parallel applications. Parallel/distributed processors

have been in existence for quite a long time -- most of which lived as "research

secrets" in laboratories across the nation. Only until recently are some

commercially available. It is not easy to find many programs that run on these

machines m not to mention any that could be termed "representative benchmark"

for parallel program behavior.

ii) It is difficult to classify/describe parallel programs. Sequential

computing on von-Neuman architectures can be described in terms of two basic

operations: "data/instruction access" and "processing". Classification of sequential

programs are, therefore, based on the characteristics of such operations (e.g.

"access locality"' "CPU/I0 bound" and "branch probabilities"). Although player

programs can also be described in terms of the characteristics of three basic

observable actions -- "player creation", "message sending/ waiting", and

"processing", there axe many dimensions along which programs can be classified

(e.g. degree of parallelism, amount and pattern of communication and computation,

dependency/relationships between players and parallelism "grain size" etc.). Dif-

ferent programming paradigms seems to demand different dimensions for

classification. The large variety of paradigms in which parallelism can be expressed

(or exploited) makes finding "representative" programs difficult.

For the purpose of this experiment, programs are classified into two classes depending

on how concurrency is expressed/exploited:

Class A: (e.g. Data-flow [Davis 821 and Systolic [Kung 82] ) -- With these

paradigms, the computation is organized as a collection of computing agents

(players) among which requests (messages) of different types are communicated.

No player has to be blocked to wait for a specific (reply) message from another

player before resuming computation. In other words, a player can _ choose

to process messages (in its message buffer) in any order.

Consider the simple problem of "concurrent tree search": A data-base is

organized as a tree of players -- the lowest level (1) of which holds the actual data.



Search can be carried out simultaneously along different branches of the tree. A

"class-A" implementation is described in Figure 2-1 using BDL -- a behavioral

description language for player programs ['Yan 86a]. Requests are generated at the

"root" of the tree and propagates down each branch of the tree. There is no need to

block and wait for replies before sending out the next request because all messages

(both enquiries and replies) are tagged. A player at stage (k) can accept requests

arrived from stage (k+l) and replies from stage (k-l) and process them in any

order.

(defPlayez node

(SEARCH RESULT)

(parent left_child right_child)

(search_key data)

(SEARCH

(record search_key)

(post left_child SEARCH search_key)

(post rightchild SEARCH search_key))

(RESULT

search) received

(record search_key data)

"result"

(post parent RESULT search_key data) ) )

messages it understand

its acquaintances
internal states

"SEARCH" message received

extract "search_key"

propagate request to left child

• .. and rightchild

"RESULT" (from 1 previous

extract "search_key" and

forward it to the parent player

Figure 2-1. "Data-flow" Implementation of Concurrent Tree Search

(defPlayer node

(REQUEST RESULT)

(parent left_child right_child)

(search_key data)

(REQUEST

(record search_key)

(post left_child REQUEST

(post right_child REQUEST

(RESULT -(record data)

(post client RESULT data) ) )

search_key)

search_key))

Figure

messages it understand

acquaintances
internal states

"REQUEST" message received

initiate search...

result arrives

forward it to client

2-2. "Parallel-Function-Call" Implementation of Concurrent Tree

Search

Class B: (e.g. Remote procedures [Nelson 811, "streams" [Weng 751, "fork/join"

[Conway 63, Dennis 66], "parBegin/parEnd" [Dijkstra 651, "ForAll/ DoAll" ,

Concurrent Pascal [Hansen 751 and CSP [Hoare 781 etc.) -- Analogous to function



calls,parallelismis explicitly initiatedvia messagepassingbetween"sender"(c.f.
caller) andreceiver(c.f. callee)players. After themessageis sent(c.f. function
call), thesenderblocksto wait for its reply (c.f, functionreturn).

Figure2-2 illustratesthe "class-B"implementationof thetree-searchexample.
Recursivewavesof messageis sentfrom playersat stage"k+l" to thosein stage

"k". Only onerequestis allowedto flow downthebranchesof the tree. At any

one time, only players at the same level executes in parallel. All players at higher

stages are blocked. The next request will have to wait at the root of the tree until the

previous request finishes processing.

2.2 The Multinrocessor Model

The multiprocessors being considered consist of "ensembles of identical, concurrently

operating, and regularly interconnected processing elements" [Seitz 82] (e.g. the Cosmic

Cube [Su 85]). Each processing element (or "site") is autonomous. It contains its own

storage, processor and a distributed operating system kernel governing local activities such

as message forwarding, task scheduling, and memory management.

In these experiments, the sites of the F"]'lSitel

multiprocessors are completely connected (Figure

2-3). This topology was chosen in order to

eliminate the effects of routing policy -- thus

provides us a simpler environment for data Site 2 /¢__ Site3

interpretation.

For the purpose of the study, the basic

operations of a site is modelled as follows:
Figure 2-3. Four Completely-

i) Local scheduling policy: Connected Sites

a. executable players "time-share" the (only) processor unit in a ROUND-ROBIN

fashion;

b. players axe preempted for "system operations" which include:

• memory management (e.g. player creation/termination)

• message delivery to local players

• send a one-packet-message to players in a neighbor site

• context-switch overhead

decisions, scheduling overhead

Wmem

Tdeliver

Thop

Tinterrupt



Throughouttheseexperiments:Tmem,Tintemrpt,TdeliverandTosarekeptsmall
(---0).

ii) Messagesendingmechanismm Whenplayer P at site <sp> wishes to send a

message to player Q at site <Sq>, the following procedure is carried out:

Operation

a. message delivered to infinitely large buffer at <Sq>;

b. processor at <Sq> alerted;

c. later*, the operating system of <Sq> delivers the

message to the receiver player (Q);

Time char_ed

Thop

Tinterrupt

Tdeliver

to CPU at...

<Sp>t

<Sq>

<Sq>

In this case, the time spent in remote communication is charged to the CPU at

the site in which the sender player reside. An alternative model involves

charging Thop to the site of the receiver player. This involves a slightly

modification in protocol suggested.

* Although the operating system at site <Sq> can preempt any executing

player(s) to handle messages, many messages may arrive at a site

simultaneously. Therefore, there is still an indeterminate delay between the time

when a message is delivered to the destination site and the time when it is

actually delivered to the receiver 1_. Messages will eventually be received

because i) the ports connected to neighboring sites are served in a ROUND-

ROBIN fashion and ii) incoming messages at each port are served on a FIRST-

COME-FIRST-SERVE basis,.

2.3 An Exhaustive Search?

These experiments simulates the execution of two 9-players-programs a multiprocessor

with 4 completely connected sites. In order to guarantee finding the "optimal mapping", an

exhaustive search over all possible mappings was carried out.

"How many ways are there to place N__P players into N_$ sites?" The answer to this

question depends on:

a. the program m if some of the players have the same behavior (e.g. communica-

tion, synchronization and computation requirements), the number of possible

solutions is greatly reduced;

b. whether all the sites are identical; and

c. how the sites are connected (i.e. the topology of the communication network).
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Figure 2-4. Search Space Size for N Players on (at least)

N Completely-connected Sites

In the worst case, where all sites/players are different and the topolog,] is non-uniform,

there are N_P N-s assignments. Even when the sites are completely connected, the total

number of possibilities still increases exponentially 1 (Figure 2-4). Given the computing

resources and time available, the 9-SITE-4-PLAYERS configuration was chosen -- it takes

11,051 iterations, which translates to 15 hours of simulation time (using one processor on

the Sequent Balance-8000) and 1.2 Mbyte of data to be analyzed (Figure 2-5).

N_S

9

9

10

10

N_P/N_SN_P

4

5

4

5

2-5.

2.25

2.2

2.5

2.0

no. of solutions

11,051

18,002

43,947

86,472

simulation tirne

15.34 hours

24.99 hours

2.6 days

5.1 days

data _athered

1.2 Mbyte

2 Mbyte

4.8 Mbyte

9.4 Mbyte

Figure Comparing Simulation cost for different N_P and N_S

Beside being economically feasible, the configuration chosen should also post constrains

to make the placement problem "interesting". For example, with approximately one site

available per player in a completely connected structure (i.e. N P _< (Or =) N_S), the

solution to the placement problem with low communication cost (obviously) involves

placing a player at each site. The higher the average number of players per site is, the more

"interesting" the problem becomes. The heuristics have to minimize the contention between

players resident in the same site yet at the same time, be aware of the penalty in remote

1 Appendix I contains the full solution to the placement problem with completely-connected sites.
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communication when distributing the computation over the machine. If the value of

N_P/N_$ were too high (e.g. _ N_P), the placement problem is also "uninteresting" because

total number of possible placement is small (see Figure A-1 in the Appendix). The value of

N_P/N_S for the 9-SITE-4-PLAYERS configuration was _ 2.2.

2.4 What to Measure

2.4.1 Preliminaries

Figure 2-6 below gives a very brief summary of some of the approaches taken by other

researchers to represent a distributed program, a multiprocessor and their interaction

(indicated by "a"). A "_" indicates that the particular model was used, "×" for "not used"

and "1" indicates the use of "cost models".

Model

1. cost model

2. precedence graph

3. connection graph

4. queuing model

5. Imessage count

6. load indices

Pro_,rarn

z
-4 1

,/ ×
× ,/

Figure 2-6. Descriptions of

Although some of these approaches

Machim

,/
1

,/
,/
X

,/

Concurrent

References

[Stone 77/78, Lo81, Steele 85]

[Sankar 87]

[Bokhari 81, Gylys 76]

[-Ni 81, Gao 84, Chow 79]

[Miller85]

[Efe 82, Stankovic 81]

Execution Environments

produced resource management strategies with

performance improvements, these results were, nevertheless, somewhat unsatisfactory:

i) Many of these approaches were concerned with minimizing the average turn-around

time for a group of unrelated/independent tasks -- the results of which are not

directly/readily translatable to the context of managing a single computation.

ii) Many researchers have defined "optimal mapping" without giving sufficient

justification that such measurements indeed relate to program execution time.

iii) Approaches that based on abstract program models produce results that are not

directly applicable to "real" programs.

"Post-game analysis", on the other hand, does not rely on any abstract program or

machine model. Instead, it makes use of "measurable quantifies" actually gathered during

program execution to produce resource management strategies directly incorporable into

distributed operating system kernels. In order to attain a better understanding about the

resource management problem and why "post-game" works, more than twenty parameters
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were measured. These parameters are classified as follows when used in "post-game"

analysis:

i. Site d¢scriptors (COs)-- describe the utilization and contention of the resources at a

site;

ii. Player descriptors (tOp) -- describe the resource requirements (or characteristics)

of individual players;

iii. In_¢r-Player descriptors (o_Xl) -- describe the interaction between players which

includes parameters that describe the amount of communication between them and

their inter-dependencies.

iv. InI_-Site descrip¢or_ (O._st)-- summarizes the interaction between players resident

in different sites.

To facilitate their descriptions, here are some more definitions of the terminology used:

• N_S _ total number of sites

° N._P _ total number of players

° N_PQ --:-- the total number of possible player pairs = CN_"r' = (N_P-1)

$

• _C0s _ sum of a site descriptor (COs)over all sites

• _o_p -- sum of a player descriptor (top) over all players

o w sum of an inter-player descriptor (Ohx1) over all possible players

pairs

p_s

• _cop _ sum of a player descriptor (COp)for players that reside in the same site.

For our purposes here however, they are classified into five groups describing different

of the execution environment. The dimensions of all the parameters are in time

units (with the exception of N_MSG).

2.4.2. "Overall" Measurements

§ Execution time ( Texe¢ ): Because the "optimal" mapping is defined as the

mapping with minimal execution time, this quantity is used to compare the

relative "goodness" of among different mappings. Speed-Up ( S ) is directly

deducible from the execution time: _ where To = program execution time
¢,xec

when only one site is used.

§ The number of remote messages sent ( N_MSG ): A message is considered

"remote" when it is passed between two players that reside in different sites.
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2.4.3. CPU Utilization

§ CPU time consumed at the busiest site ( H_CPUs ) -- The "busiest" site is the

one whose processor idles the least. It should be noted that the processor is

used both for "user computation" (Teompute) as well as operating system

functions such as message passing (Tmsg). Tcompute only depends on input

data variation for a particular program. In this experiment, Tmem, Tinterrupt,

Tdelive r and Tos are small and, therefore, ignored. For the processor at each site

Tcp U = Tcomput e + Tmsg.
s

T_u
§ Average CPU time consumed per site ( A_CPUs ) -'- N_S

§ "Load balance" (USRstd) is defined as the standard deviation among the CPU

utilizations over all sites. When USRsui - 0, the sites are "loaded evenly".

2.4.4. Communication

§ CPU time used for communication at the site from which most remote messages

are sent: ( I-I_MSGs )
s

ETmsg
§ Average time used for sending messages per site ( A_MSGs ): N S

2.4.5. Contention

Player ID

<A>

<B>

<C>

Ready Start

15 30

10 47

End

30

47

__Cammlig.a_.Cam L

<A>

0

0

<B> <C>

15 20

- 17

0

Figure 2-7. An Example: Execution Profile and "Contention"

There are many ways in which "contention" can be measured at a site. Instead of

choosing the length of the ready-queue as many researchers have, 9 parameters are

proposed here as possible candidates. All of them have "time" as the dimension.

In Figure 2-7, between <A> and <B> for example, Tcontention - 15 m i.e. player

<B> has to wait 15 time units in the "ready-queue" or player <A> to finish
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executionbeforeit cangethold of theprocessor1. Only playersthatresidein the
samesitecancontendwith one another.

§ The highest contention (i.e. Tcontention) (H_CONTpp) experienced between a

pair of players m e.g. in Figure 2-7, I-I CONTpp = 20 (between <A> and <C>)

§ The average contention experienced per player pair (A CONTpp): 'xF(

_ ql?contention,N_PQ)

§ The "total contention received" (or "queue-time") by a player fr(f.r_9_ others)

essentially indicates the total time it spent (Treacly-q) wai_g for others to finish

using the CPU. I-I_CONT_RTp describes the player which spent the longest

time in the "ready queue" (e.g. in Figure 2-7, H_CONT_RTs = 37 received by

q_s
<C>). For player <P>, Tready-q = _ Tcontention over all <Q> that resides in

the same site.

§ The average "queue-time" (A_CONT_RTp) per player indicates the average

time a player spent in the "ready queue" before getting hold of the processor.

§ The "total contention caused" by a player _ others) indicates the total time

other players spent waiting for it to finish using the CPU. H_CONT_CTp

describes the player which causes the most "total contention" (e.g. in Figure 2-

7, H_CONT_CTs -- 35 caused by <A>).

§ ACONT_CTp represents the average "total contention caused" per player.

p_s
§ The "contention sum" at a particular site (_Tready-q) is defined as the total time

resident players spent in the ready-queue. H_CONTs describes the site which

has the "highest "contention sum".

§ A_CONTs describes the average "sum of contention" per site.

§ Contention balance (CONTstd) is defined as the standard deviation of the

p_s

"contention sum" (_Tready-q) over all sites.

2.4.6. Dependencies

During the life-time of a player, it is always in one of three possible states:

i) "ACTIVATED" when it is ready to make use of (or using) the processor

computing or sending/receiving messages;

1 Throughout this section, the term "Tcontention" represents the time a player spent waiting (in the

"ready queue") for the CPU.
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ii) "BLOCKED" -- when it is waiting for a specific "reply" (message) from some

player, or

iii) "IDLE" -- any other occasions in which the player is not computing, waiting

to be "activated" by the next message.

Players in "class A" (c.f. Section 2.1) applications are either activated or idle but

never blocked.

§ When a player <A> is activated by a message sent from player <B>, the time

<A> spent in this "idle" period is defined as the "idle time" between the two

players (Tidle). The player pair which exhibits the highest idle time is described

by I-I_IDLEpp.

_ql?idle

§ Average idle time between two players ( A IDtEpp ) is defined as: N_PQ

§ When a player <A> is blocked waiting for a reply from player <B>, the time

<A> spent in this "blocked" period is defined as the "block time" between the

two players (Tblocked). The player pair which exhibits the highest "block time"

is described by H_BLOCKpp.

§ Average idle time between two players ( A_BLOCKpp ) is defined as:

pcs
§ The site which exhibits the largest sum of "idle time" (_Tidle) for players

resident is described by H._IDLEs.

§ The average sum of "idle time" per site is def'med as A_mL_

pcs
§ The site which exhibits the largest sum of "block time" (_Tblocked) for players

resident is described by H..BLOCKs.

§ The average sum of "block time" per site is def'med as A_BLOCKs
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3 Benchmark I: "Pipeline"

3.1 Introduction

The f'a'st benchmark being tested is schematically represented in Figure 3-1. Appendix II

contains a listing of this computation. Requests (coded as messages of different kinds) are

generated by player <1> and propagate "downstream" from left to right• Each player has

two acquaintances 1 w indicated by "virtual links" ("_*_" and "_" ) to the "right-

hand-side" of each player. After a player finishes processing a request, the result it

generates is then passed to one of its acquaintances for further processing 2.

route 1

,,:_.,._,_ route 2

G Player <id> Direction of"Data-Flow"

Figure 3-1. The "Pipeline" Benchmark

3.2. Overall Profile
3,5

Figure 3-2 gives a summary of 3

the behavior of this program S
2.5

when mapped onto a multi- P
o 2

processor with four completely o

connected sites. It can be seen d 1.s

that the range of attainable speed- U 1

ups decreases as communication P 0.5

cost increases (in fact this is true
0

for both benchmarks).

Figure 3-2.

\
o, n\n

,e- mira

.o- average

n° max

20 40 60 80 100 120 140 160

Communication Cost (T-hop)

Distribution of "Speed-Up"s

1 The "acquaintances" of a player <A> are those whom <A> "knows the address of' or "holds a pointer

to". A player can only send messages to its acquaintances.

2 When both links are connected to only oneplayer downstream (e.g. from <3> to <6>), all results are

forwarded to that particular acquaintance.
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It seemsthat whencommunicationcost is high, spendinga lot of effort tackling the

assignmentproblemis not worthwhilesincethebestsolutionattainablemay not differ
much from onegeneratedrandomly. When thecommunicationcost is low however,a

goodassignment makes a lot of difference in execution time.

3.3, Distribution of Execution Time

2000 2000

1800 1800

1600 1600

1400 1400

1200 1200

°°° ill,.ooo
800 800

600 ,J_l_ 600

400 400

200 200

0 o , Immi I , l | I | I I | 0

0.1.1.1. .1.1.1.1,2.2.2.2.2.2.2.
93 0619324558 71 83960922 3548617487

(a) Thop = 10

Figure 3-3. Speed-Ups

Mappings may be conveniently classified into four categories according to the number of

sites that actually have players resident. Figure 3-3 illustrates the distribution of "speed-

up"s attained by each category at high and low communication costs 1. Two observations

can be made:

1. The "shape" of the distribution in both cases indicate that mappings randomly

generated (most probably) achieve a speed up of about one-half of the optimal (or

maximum).

0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 1.1.1. 1.1.1.
6 646973778286 9 9499030712 16 2 24

(b) Thop = 100

"Classified"

1 In response to each message received, a player expand an average of 100 time units. A value of 10 for

Thop is considered to be "low" because the time spent in communication is only 10% of that spent on

computing. A va/ue of 100 for Thop is considered high as the time spent communicating is

approximately equal to that spent in computing. For values of greater than 100 time units, the

assignment problem becomes very uninteresting because the best speed-up attainable is 1. In other

words, distributing the computation over more than one site does not help at all!
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2. When communication cost is low, mappings that utilizes all four sites generally

achieve higher speed-ups than those which do not -- e.g. in Figure 3-3b, there are

more mappings with three sites loaded than those with four for which speed up is >

1!

3,4. "Remote" Message Count

Many people believed and preached that minimizing communication cost is an important

goal (if not the objective function) when considering alternative mappings. "Remote"

message count or the total time spent in sending/receiving messages has been commonly

used for such measuring communication cost. The experimental data here (shown in

Figure 3-4) demonstrates that:

i) The correlation between the number of "remote" messages and the execution time is

poor and decreases with increasing communication cost.

ii) In Figure 3-4a, execution time decreases with increased traffic. When

communication cost is low compared with the amount of computation required, the

more "distributed" the players _, the faster the pro_ would execute.

iii) Although execution time does increase with increased traffic at high

communication cost (Figure 3-4b), the correlation between the two parameters is

poor.

80 80 1 _ R = 0.3 • 4 sites

R=0.5 • 4sites _ E_ • + 3sites
•= + 3 sites

• _,_'_ = + & 2sites "6 ,IP = . • -= " 2sites

r" . ''.,+., ,z • .= .'" +,." _I-I • ..+_ +. +++_
i ,.. + t+=._ _-"T-!_:+'._ .,- 6o-1 .. -_- + .

60 '1 "=_'=_-,._+'+ =P"_, _" • • • • ++ , I._.J,p_, .+..÷"÷_

÷ ÷ t"-÷,-_'_" _
_o ,o-! ÷÷," ,_--

I -+- + AT_'-

,: ,,.., ,,; '"_l,/" • -..-.. "--
20 _: & & & Execution time 20 ,u, &a_A Execution time

t500 2000 2500 3000 2500 3500 4500 5500

(a) Thop = 10 (b) Thop = 100

Figure 3-4. Relating "Remote" Messages with Execution Time
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(a) Thop = 10

4-

Execution time
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2000
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Figure 3-5. Average CPU Time Used per Site
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2500

2000 ÷

1500
1500 2500

(a) Thop = 10

60O0

5500

5000

4500

• 4 s_es
+ 3 s_es
• 2 sRes

R = 0.88

÷

Executiontime

• 4000

3500 3000 3500 4000 4500

Execution time

(b) Thop = 100

Figure 3-6. Highest CPU Time Used at a Site

50O0

When interpreting the figures, it should be noted that:



18

i) There are three sets of points on each graph representing the mappings in which 4

(", "), 3 (" ÷") or 2 (" A ") sites are used.

ii) A line that best-fit each set of points is plotted on the graphs as well. The best-fit

minimizes the root-mean-square of the errors.

iii) the average correlation coefficient for the three lines ("R") is also indicated.

3.5. CPU Utilization

The average cPU utilization per site used (A_¢PUs) and highest CPU utilization at the

"busiest" Site (H_CPUs) are plotted against execution time in Figures 3-5 and 3-6

respectively. It is observed that:

i) The correlation between A_CPUs and execution time is poor and deteriorates with

increasing communication cost.

ii) Correlation of HCPUs with execution time are good in both cases. (Figure 3-6)

iii) The high correlation between H_CPUs and execution time suggests that the total

execution time depends on the operation of the "busiest site" of the multiprocessor

which is also the bottle-neck of the system.

3,6. Communication

E + 3sites _ E_ + 3sites I

300 <_ & 2sites <1 •
m m_

2000

2O0

100 1000 i

0 20 40 .60 80 0 20 40 60 80

(a) Thop = 10 (b) Thop = 100

Figure 3-7. Number of Remote Messages vs. the Time Spent Sending Them.

Figure 3-7 suggests that the number of remote messages is direcdy proportional to the

average time spent to route them. Figure 3-8 conf'trm the results reported in section 3.4 --

namely that time spent sending remote messages correlates badly with the total execution



19

time. It turned out that H_MSGs also did not correlate well with execution time. They

follow the general distribution of A_MSGs and are not plotted here.

_oo.I-, _&_, . ,_. _ooo_J =1 " 4sites A

/ _ N•-,-, + 3s_es / _ + 3sites _,, /

. A/_" -,_ "
__:,_÷ +
r- I, ,,,_'-.;"-.,'=_. •
I / -" wl. _TP+ execution time

lOOI , , ,, • looo i" , " ,-'- , k
1000 2000 3000 4000 2000 3000 4000 5000 6000

(a) Thop = 10 (b) Thop = 100

Figure 3-8. Correlating the Average Tmsg with Execution Time
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_
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Figure 3-9. Highest "Contention" Experienced between Two Players
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Figure 3-10. Average "Contention" Experienced between Two Players.
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Figure 3-11. Highest Total

3.7. "Contention"
;C ;_7

3000 2500

"Contention" Experienced

350O 45OO

(b) Thop = 100

by Players at a Site.

The contention measurements are illustrated in Figures 3-9 to 3-14. Four points should

be noted:

i) In general, choosing a mapping that exhibit lower contention (measured by any of

the six parameters proposed) results in a shorter execution time".
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Figure 3-12. Average Total "Contention" Experienced at a Site.
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Figure 3-13. Longest CPU Wait Time.for a Player

execution time

I I

5OO0 55OO

= 100

ii) The correlation between contention and execution time also decreases with

increased communication costs.

iii) The best correlation is observed ih Figure 3-13 -- between the "longest toial time

a player spent waiting to use the CPU" and the execution time.
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iv) Although as explained in section 2.4, contention "caused" is different from

contention "received", their correlation with execution is very similar. Therefore,

the corresponding graphs for I-I_CONT_CTp, A_CONT CTp are not plotted.
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F_gure 3-14. Average CPU Wait Time.per Player.
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Figure 3-15. Longest Idle Time between a Pair of Players
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Figure 3-16. Average Idle Time between a Pair of Players
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Figure 3-17. Largest Sum of Idle Time between Players in Two Sites

The highest correlation among the six parameters proposed is found in Figure 3-13 for

H_CONT RTp. In other words, the bottle-neck of the system lies in the CPU of the

"busiest" site. It should be noted that the correlation here is even better than that for Figure
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3-9m suggestingthat thetime playersspentin theready-queueis abetterindicator for

"busy"sitesthantheCPUutilizationatthesite.
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Figure 3-18. Average Sum of Idle Time between Players in Two Sites

3.8 Dgoendencies

With this benchmark, no players are ever "blocked" waiting for a specific "reply".

Therefore, the parameters I-I BLOCKpp, A_BLOCKpp, H_BLOCKs, and ABLOCKs are not

defined.The "IDLE" parameters are plotted in Figures 3-15 - 3-18. Although the general

trend of the results are as expected, none of the measured quantities exhibit a very high

correlation with the execution time.. The situation for the next benchmark is not the same

(see Section 4.7).
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4 Benchmark II: Divide and Conquer

4.1 Introduction

The second benchmark being tested is schematically represented in Figure 4-1 (BDL

listing in Appendix HI). A stream of requests are initially presented to player <1>. It

partitions the first request into two (not necessarily equal) sub-tasks and delivers them to

players <2> and <3>. Player <1> then "blocks" and wait for players <2> and <3> to

"reply" before servicing the other requests one by one. Player <2> (<3>) invokes players

<4>, <5>, <6> (<7>, <8>, <9>) in parallel, blocks to wait for all their replies before

replying to player <1>. Each player also expand an average of 100 time units in response

to a message received u part of which is spent creating the sub-tasks and the rest in

processing the results received.

/t\ /,\
O ® ® ® ® ®

Figure 4-1. The "Divide.and-Conquer" Benchmark

Request / reply

Player <id>

i I i[] 4sites [] 3sites [] 2sites [] 4sites [] 3sites [] 2sites

O. O. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
8794 01 08 15 222936 43 5 57 647279 86 93

(a) TI, op = 10

Figure 4-2.
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(b) Thop = 100

Speed-Ups "Classified"
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412 Summary of F|ndin_

Instead of going through the graphs one by one, a summary is given here at the

beginning m comparing the major findings here with the previous benchmark. The

interested reader is encouraged to inspect the graphs listed in the rest of this chapter (section

4.3 to 4.7).

1. The distribution of execution time (Figure 4-2) indicates that the success of the

resource management system is also critical for exploiting available parallelism on

the multiprocessor for this benchmark -- especially when communication cost is

low.

2. The correlation between the number of messages routed over the net is worse than

that of the previous benchmark (Figure 4-3);

3. so are the parameters describing CPU utilization (Figures 4-4, 4-5a, 4-6a).

4. With high communication cost however (Figure 4-5b, 4-6b), the correlation

factors for CPU utilization increases (as opposed to a decrease for the previous

benchmark!).

5. None of the Contention figures measured at high communication cost correlates

well with execution time (Figures 4-9b, 4-10b, 4-11 b, 4-12b, 4-13b, 4-14b)

6. With low communication cost however, the best contention parameter is

H_CONT_RTp m which describes the total time a player spent waiting for the CPU in

the ready-queue (Figure 4-13a and 4-14a).

7. All "dependency parameters" (Figures 4-15, 4-16, 4-17, 4-18) correlates (with

execution time) better than the previous benchmark. In fact, execution time is

almost directly proportional to H_IDLEpp (as well as H_BLOCKpp) which describes

the longest time a player spent waiting for the next request arriving fxom its "parent"

upstream.
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Figure 4-4. Average CPU Time Used per Site
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Figure 4-5. Highest CPU Time Used at a Site
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Figure 4-6. Correlating Tmsg with Execution Time.

exection time

I

30000

Unlike the first benchmark, A_CPUs and H_CPUs correlates better with executing time

with increased high co_unication cost. Fi_ 4-4b bears a close resemblance to Figure

4-3b because the CPU at each site in fact spend more time routing messages than

computing. The pattern in Figure 4-4b actually reflect the number of messages routed.
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Figure 4-7. Number of Remote Messages vs. the Time Spent Sending Them

Unlike the previous benchmark, the correlation factors for A_MSGs (as well as H_MSGs)

increase with the communication cost.
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Figure 4-8. Correlating the Site which Spent the Most Time

Routing Messages with Execution Time
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4.6 "Contention"
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Figure 4-10. Average "Contention" Experienced between Two Players.
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Figure 4-12. Average "Contention Sum" Experienced at a Site.

Using "sequential terminology", the poor correlation for all these (CPU) contention

parameters seems to indicate that the system is "fro bound". In other words, although



32

players within a site still competes for the processor, proper allocation of computing

resources to facilitate message sending is more critical to obtaining speed-up!
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Figure 4-14. Average CPU Wait Time.per Player.
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Figure 4-20. Average "Block Time" between Player Pairs

For this benchmark, the parameters A BLOCKpp, I-I BLOCKpp, ABLOCKs, and H_BLOCKs

axe defined and plotted in Figures 4-19, 4-20, 4-21 and 4-22. Their high c0-relation

suggests that a mapping that minimizes the idle time between players also minimizes the

execution time.
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5. Conclusions and Future Directions

5.1 Summary of Major Findings and Their Interpretation

A. For both benchmarks, the speed-up obtained varies according to how players are

mapped to sites. Randomly generated mappings can be far from the optimal, thus making

the success of the resource management system critical to fully exploiting available

parallelism in a concurrent system. Even when all sites are loaded with almost the same

number of players (i.e. "balanced"), execution speed is not necessary minimized. Figure

45 below illustrates that when the sites are loaded in a 2-2-2-3 configuration 1, speed-up is

still distributed over a very wide range irrespective of communication cost. The same is

true for high communication cost.
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"Divide-and-Conquer" Benchmark

Figure 5-1. Speed-up Distribution with the 2-2-2-3 Configuration (Thop = 10)

B. The following parameters are found to be "good descriptors" for the execution

environment-- these parameters correlates well with execution time:

1 A "w-x-y-z" configuration indicates that there are "w" players in the first site, "x" in the second.., etc.
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Benchmark I (Pi_-line_:

With low/high communication costs

• I-I_CPUs (Figure 3-6), the CPU utilization of the "busiest" site. This indicates

that the processor at the "busiest" site is the bottle-neck for the execution

environment.

H_CONT_RTp (Figure 3-13) describes the player which spent the longest

time in the ready-queue. There are three possible reasons that make ready-

queue "long": (i) all resident players require a lot of processing, (ii) players

at a site always execute at the same time and/or (iii) the CPU is busily

delivering messages. In this benchmark, where players execute as soon as

the CPU is available, the "busiest site" presents the longest ready-queue to

its residents.
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Figure 5-2. Speed-up Distribution with the 2-2-2-3 Configuration

With low communication cost

• H_CONTpp (Figure 3-9a) represents the highest contention experienced

between a pair of players. When communication cost is negligible, the

(b)



processor is mostly used for program execution. Players, therefore, has to

wait for the processor mostly because of other players executing.

Therefore, this quantity reflects the CPU utilization at the busiest site.

However, with high communication cost, the player has to wait for message

delivering as well. H_CONTpp therefore, does not necessarily reflect the

bottle-neck of the system.

Benchmark II (Divide-and-Conquer);

With low/high communication costs

• H_rDLEpp (Figure 4-15) and H BLOCKpp (Figure 4-19) represent the longest

time a player has to wait for a request to arrive and finished respectively.

Because this benchmark is highly structured, the performance of the system

depends critieaUy on the specific sequence in which players are invoked.

These two quantities represent the "bottle-neck" in the system

• A_IDLEpp (Figure 4-16) and A_BLOCKpp (Figure 4-20) represent the average

time a player has to wait for a request to arrive and finished respectively.

The good correlation of these two parameters (with the execution time)

merely reinforces the point above -- that the performance of programs

which exploit parallelism explicitly depends critically on the way in which it

is orchestrated.

• A_IDLEs (Figure 4-18) -- the average sum of "idle time" per site

With high communication costs

• A_CPUs (Figure 4-4b) and H_CPUs (Figure 4-5b) describe the utilization of

the processor at each site. The fact that they correlate well (with execution

time) _ at high communication costs again suggests that CPU usage is not

a critical factor for execution with low communication cost. It is the

sequence, not the amount, in which different players utilizes the CPU that

matters (c.f. H_CONTpp in Figure 4-9a).

• A._MSG s (Figure 4-7b) and I-I_MSGs (Figure 4-8b) represent the time spent

delivering messages. At high communication cost, message routing takes a

relatively larger proportion of time and thus CPU usage becomes a bottle-

neck. These parameters reflect such bottle-necks.

With low communication costs

• A_CONT_RTp (Figure 4-14a) describes the average time a player has to wait

in the "ready queue" before execution. The good correlation again indicates

that it is not the amount of processing power available that matters but that

39
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theprocessorshouldbeavailablewhenaplayerrequiresit. Thecorrelation
deteriorateswith increasedcommunicationcost becauseincreasedmessage

delivertimehave"skewed"theexecutionprofile

C. The following parameters do not correlate well with program execution time for both

benchmarks:

With low/high communication costs

• N MSG (Figures 3-4 and 4-3) -- the total number of messages routed to remote

players does not describe the execution environment because message routine

can occur in parallel. Although N MSG describes the total emote of processor

time spent for communication, minimizing this quantity without regard to

contention of processor contention at each site does not necessarily guarantee

minimization of execution time.

• A__CONTs (Figures 3-12 and 4-12) -- the average sum of "contention" per site

is not a good measurement of contention over the system.

• H_IDLEs (Figures 3-17 and 4-17) describes the site with the highest sum of "idle

time".

With low communication cost:

• A_CPUs (Figure 3-5a and 4-4a) -- the average CPU utilization per site

With high communication cost, the following does not represent the contention of the

system:

• H_CONTpp (Figure 3-9b and 4-9b) _ highest "contention" between a player pair

• H_CONT s (Figures 3-11b and 4-11b) _ site with the highest contention

experienced by players

• A_.CONTs (Figures 3-12b and 4-12b) _ average contention experienced by

players per site

• A CONT_RTp (Figures 3-14b and 4-14b) _ average time spent in the ready-

queue per player

5,2 performanee0f "Post-Game" on these=BenChmar_ :

Execution time cannot be _imized simply by finding mappings with small numbers of

remote messages. The effects of CPU contention at each site must also be taken into

consideration. In order to improve execution time, "post-game" must:

i) properly trade-0ff the gain obtained from concurrency with the increased cost in

remote communication; and

ii) locate (and then, alleviated) the bottle-neck of the system.
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Three "post-game" strategiesare applied to thesebenchmarks for performance

comparisonandevaluation.TheFasttwo strategies"Site-Priority"and"Corn-gain"consist
of a singleheuristiceach[Yah 87a]. The third strategylabeled"Post-game"consists

consistsof 7 heuristics-- theapplicationof whichis carefullycontrolledandprioritized.

A detailed descriptionand explanationof the performanceof the heuristics is given
elsewhere[Yan 87b].

5.2.1 Benchmark I -- Low Communication Cost

The fast exercise involves managing the "Pipe-line" Benchmark with Thop = 10. Figures

5-3a and 5-3b illustrate that the optimal placement involves a "balanced mapping" which

presents an approximately equal demand on all the processors at each site.

25oo "1 I / 8000
] _ " 4 sites //. / 1= I • 4 sites /
1_ + 3sites /=/ 4"_ I * 3sites J)/"

oo "-= " 2 sites
20 1_ - - #/ |_ I & 2sites

6000 4 _ I Rl 0 93 A Jb. 4ky

: '°°°tl • "X.:/41000

o!/'/.;
1000 2000 3000 4000 1500 2000 2500 3000

(a) USRstd (b) CONTstd

Figure 5-3 Benchmark I at Low Communication Cost (Thop = 10)

The performance of the heuristics is plotted against the distribution of speed-up to

demonstrate their performance (Figure 5-4):

1. The maximum speed-up obtained is approximately the same for all three strategies

-- within 96% of the optimal (top 1% of all possible mappings).

2. The multi-heuristic-strategy (labeled "Post-Game") achieves this value in two (!)

steps -- while the others take approximately 10 iterations.

3500
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Figure 5-4 Performance of "Post-Game Analysis on

Benchmark I with low Communication Cost (Thop = 10)

5.2.2 Benchmark II -- Low Communication Cost
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Figure 5-5 Benchmark II at Low Communication Cost (Thop = 10)

The placement exercise for the "Divide-and-Conquer" is a slightly different problem.

Besides the evidences offered in section 4, Figures 5-5a and 5-5b further suggest that

balancing "contention" as opposed to CPU utilization is the key towards obtaining speed up.

Figure 5-6 shows that:

9OO0
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1. Again, the maximum speed-up obtained is approximately the same for all three

strategies w within 96% of the optimal (top 1% of all possible mappings).

2. The multi-heuristic-strategy (labeled "Post-Game") achieves this value in five steps

while the other two takes approximately 7 iterations.
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Figure 5-6 Performance of "Post-Game Analysis on

Benchmark ]-[ with low Communication Cost (Thop = 10)
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5.2.3 Benchmark I m High Communication Cost

With higher communication cost, the placement problem becomes less interesting as the

range of achievable speed-up decreases. The optimal speed-up attainable also decreases

in fact, with sufficiently high communication cost, mappings utilizing more than one site

exhibit a longer execution time. Figures 5-7a and 5-7b further suggest even balancing

"contention" does not guarantee obtaining the optimal speed-up in this case. Figure 5-8

shows that:

1. The maximum speed-up obtained is is obtained by the heuristic labeled "Com-

gain" in 11 steps -- within 95% of the optimal (top 1% of all possible mappings).

2. The multi-heuristic-strategy (labeled "Post-Game") achieved only 85% of the

optimal and halted after 3 iterations.
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5.2.4 Benchmark II -- Moderate Communication Cost
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It should be noted that:

i). obtaining the optimal speed-up has nothing to do with "load-balancing" (Figure 5-

9); and
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ii). the range of attainable speed-up is small -- with half of which less than 1 (Figure

5-10).
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Figure 5-9 Benchmark H at Moderate Communication Cost (Thop = 25)
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Figure 5-10 Performance of "Post-Game Analysis on

Benchmark H with Moderate Communication Cost (Thop = 25)

In spite of these difficulties, the placement heuristics were able to attain to 84% of the

optimal speed-up achievable (top 25% of the whole population). Figure 5-10 shows that
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for thetwo single-heuristicstrategies,the initial stepsin fact "sloweddown"theexecution

timeof theprogram. This,however,wassooncorrected.

5.3 Conclusions and Future Directions

An investigation was conducted to find out how system parameters varies with mapping

configurations for two small programs (with nine players) on a multiprocessor (with four

sites). The sites of the multiprocessor were completely connected, nullifying any effect of

routing strategies. The measurement of "locality" in this system involves only two discrete

states: "local" or "remote" as opposed to some continuum for other connection topologies

such as a "grid" or n-dimensional cube. Even for such a simple system, the range of

attainable speed-up is large (a 3-fold difference!) with low communication cost. The two

programs selected represented two different ways of exploiting parallelism: data-flow vs.

parallel-procedure invocation, unstructured vs. structured exploitation of parallelism,

implicit vs. explicit expression of concurrency and processing-bound vs. communication-

bound characteristics. Initial experimental analysis of the data suggests that the key factors

to obtain speed-up for both cases are similar:

1. Alleviation of bottle-neck -- whether it be communication or processing

contention, the bottle-neck of the system has to be detected and somehow,

alleviated.

2. Minimization of remote communication or balancing the load of each site alone

does not necessarily leads to a reduction in execution time. These two factors have

to be properly waded off.

The experiment also demonstrate that a good resource management strategy should be able

to respond to different programs behavior (or programming paradigms):

• With the first program "pipe-line", the key issue was reducing the processing bottle-

neck in the system.

• With the second program however, identifying the dependencies between players to

allocate resources accordingly is more important.

It was also shown that the placement heuristics proposed indeed was able to respond to

the different needs of these two small programs and attain acceptable speed-ups. A detailed

account of these heuristics is given elsewhere [Yan 87a, Yan 87b].

Regression analysis and related data-interpretation techniques are being employed in

order to identify the cross-correlation between some of these variables and extract the few

that are "really matters". The findings from these analysis are currently used to

refine/improve the heuristics.
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Appendix

I. Solviflg for "All" Possible Assiggments for Completely Connected

Sites

The problem of generating all possible assignments for completely connected sites turned

out to be more difficult than expected. If all the sites were different or are connected in an

irregular topology, the number of possible assignments is large (N_St't-P) -- but generating

the placement configurations is straight forward! When the sites are connected in a regular

topology, many of the N_SN- p mappings are in fact identical. They are "mirror images" or

can be obtained via similar transformations from some other mappings. Completely

connected nets present a easier placement problem to be solved among the many regular

topologies.

The problem of deciding "how many ways there are to place N__P players into N_S

completely connected site" is broken into two major sub-problems -- both of which can be

solved by recursive methods.

A. Classification of Placement Configurations.

Although N_S sites are available, it does not necessarily follows that there is at least one

player in each site for each of the possible configuration. So if we def'me:
NP

§ 1, AN-_s = the number of ways to place N_P players into N_S completely connected

sites (such that N_P > N S), then

i=N S
NP

§2. AN_ s = _ BN_ P...... where

i=l

§ 3. BNT P = the number of ways to place N_P players into _ 'T' completely

connected sites. In other words,. B NP describes the number of ways to place N_P

players into "i" completely sites such that there is at least one player in each _it¢.

§ 4. Each mapping that utilizes exactly "i" sites can be described by a set _i__P =

{nl, n2 .... ni} where "nk" describe the number of players in the "k th'' site (e.g.

when N P - 6 and i = 3, the possible 13i,l__p's include: {1,1,4},{1,2,3} and

{2,2,2}). It should be noted that

a. since all sites are homogeneous and are connected to one another, the order

of the elements "nk" does not matter (hence 13i,N_yis a set); and
k-i

b. _ nk = N_P for all _i,N_P

k=-I
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§ 5. The sets I_i,N_e call be further classified into three kinds:

a. simple-13: where all "nk"s are different;

b. even-I]: where all "nk"S are the same; and

c. normal-p: otherwise (only some "nk"S are identical)

The method of obtaining BNi"p for all three cases are similar but not identical

B. Generating Placement Configurations.

A simple recursive algorithm can be used to generate _i,NP for any "i". The total

number of possibilities can be enumerated by further classifying the 13's into the

three classes shown in §5 above. The difficult part of the problem is not finding a

method to "count" but to "generate" all placement configurations without

dupliqation. In combinatorial theory, many enumeration techniques fh-st generate

all possible configurations in a similar situation and then divide the result obtained

with an appropriate value argued from symmetry 1. With millions of possibilities,

an algorithm that needs to check each configuration with the ones already generated

is not practical.

This section describes the recursive algorithms used to

i) generate all possible I]i,N_p's

ii) generate all possible placement configuration for simple-13's, even-[3's and

normal-lYs.

B.1 The Algorithm to Generate _i,N_P

For any set _i,N_P, a corresponding ordered i-tuple (or vector) lYi,N._p can be

obtained by sorting the "nk"S in an increasing order. "generatel3(i, 1, N_P)"

can be called to obtain the "nk"S of the vector 13'i__P (where 13'[k] represents

the kth element of the i-tuple). The simplified procedure is listed as follows

following in a "C"-like syntax.

generate_(k,

int k,

min_val,

min_val, players_left) F The procedure takes 3 arguments */

/* points to (i-k)th element of array */

r 13'[k]< 13'[k+1]"/

.... n nl

I e.g.the totalnumber of ways to choose "r" ballsout of n _r --_can be thought of

i) place "n" balls into "n" slots (n!);

ii) then merely look at the fast "r" slots (hence divide by (n - r)!); and finally
iii) ignore the ordering of the fLrSt"r" slots (hence divide by r!)
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k=i
players_left; /* since _ nk = N P*/

k=l

int result, flag; /* internal variables*/

flag = 0 ; /* initialization *I

if (players_left < min_val) return(0) ; /* since 13'[k]< 13'[k+1],this call*/

r call to assign fails */

else { /* otherwise...*/

if (k ==" 1) ( /* if this iSthe last (kth) element of _' */

I_' [i - 1] = players_left; /* put all the players left into _'[i-1]*/

configure_ (l_l') /* record configuration and generate*/

/* the actual placement configuration */

return ( 1 ) t /* a successful configuration is found*/

} else do { /* if this is notthe (kth) element of 13'*/

I_' [i - k] = min_val; /* assign the minimum value to 13'[i-k]*/

result - /* recurse down the array... */

generate D (k-l, _ assign the next element... */

min_val, _ with the same minimum value... */

players left-min_val) ; f' butwith fewer players left */

if (result) flag = I; /* if any successiul configUrafion was */

++min_val; /* found, increment value of _'[i-k]...*/

} while (result) ; } ; /* and try again until no successful */

/* mapping can be located */

return (flag) ; ) /* tell caller whether any successful */

/* configuration was ever found */

B.2 The Algorithm to Configure _i,NP

Generating the actual mapping between players and sites is simplest when all the

"nk"S of _'i.N_P are different from another. This problem is analogous to

enumerating the sequential selection of balls from a pool of N_P with nk balls taken

at a time (in any order). For example, for 133,10 = {2,3,5}, the total number of

c'10"r'8"c'5 = C10"C_2"C_3 where CYx = the number ofpossible placements = "2 "3 "5 "'"

ways to select a subset of "x" items from a pool of "y". However, when all "nk"S

are identical, this simple enumeration approach has to be slightly modified. The

interested ready is encouraged to prove the following statements:
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§ 6. Thetotalnumberof waysto configuresimple-_i,N_p= {no, nl, n2 ....

hi} is:

, c

§ 7. The total number of ways to configure even-[3i,N._P -- {n, n, n .... n} is:

CNn__-I, ,_¢"N-P'(n+I)-In.l * CN-P-2(n+l)-In.l ... , Cn.ln-I

Because the enumeration methods for even-13 is different from that for simple-

13, the process of configuring normal-[3's (e.g. [37,30 = {2,3,3,5,5,5,7})

involves two steps:

i) &C..Cdi.Qaiag _' into even-ITs with the smallest possible length (in this

case for _7,30: {2}, {3,3}, {5,5,5}, and {7}) and then

ii) sequentially generating the configurations of these even-ITs.

C. Distribution of the Number of Configurations
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Figure A-1 Distribution of the No. of Configurations

against the No. of Sites Actually Used
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It has already been shown in Figure 2-4 that the total number of possible configurations

increases exponentially when an infinite number of sites is available. Figure A-1 below

illustrates how the total number of configuration varies against the number of sites actually

used. It can be seen that the number of possibilities is the greatest when N_P = 2 * N_S.
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This explains another reason for choosing the 9-player-4-site configuration _ to make it

harder for the placement heuristics to locate a suitable mapping!
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D Actual Program Listing

#include <stdio .h>

/* #define G generate data structures to give correct output */

/* #define P output placement configuration on screen */

/* #define Q output player id's on screen */

/* Allowable Configurations G-P-Q-, G+P-Q+, G+P+Q- and G+P+Q+ */

/* The output for the various options are listed as follows for N_S _ 2,

N P -- 5
w

G-P-Q- merely counts the number of possible configurations for different [3

##type : 14 /* i.e. 1 player in a site and 4 in the other */

## 5 ##

##type : 23 /* i.e. 2 player in a site and 3 in the other */

## i0 ##

### Total(5, 2): 15 ###

G+P-Q+ generate the id's of the players that actually reside in each site

##type : 14

0123 4 /* player <4> in one site and the rest in the other site..*/

0124 3 0134 2 0234 1 1234 0

## 5 ## /* total count */

##type : 23

012 34 /* players <3>,<4> in one site and the rest in other site..*/

013 24 014 23 023 14 024 13

034 12 123 04 124 03 134 02 234 01

## I0 ##

### Total(5, 2): 15 ###

G+P+Q- generates the placement locations (i.e. site id's) for players

##type: 14

1 1 1 1 0 /* player <4> in site "0" and the others in site "1"

i 1 1 0 1 11011

10111 01111

## 5 ##

##type : 23

1 1 1 0 0 ii0 I0 Ii0 0 1

10110 10101 10011

01110 01101 01011

00111

## I0 ##

G+P+Q+ generates "everything"

##type : 14

0123 4 ** 1 1 1 1 0 ** 0124 3 ** 1 1 1 0 1 **

0134 2 ** I 1 0 1 1 ** 0234 1 ** 1 0 1 1 1 **

1234 0 ** 0 1 1 1 1 **



*/

## 5 ##

##type : 23

012 34 ** i 1 1 0 0 ** 013 24 ** 1 I 0 1 0 **

014 23 ** 1 1 0 0 1 ** 023 14 ** 1 0 1 1 0 **

024 13 ** 1 0 1 0 1 **

034 12 ** 1 0 0 1 I ** 123 04 ** 0 1 1 I 0 **

124 03 ** 0 1 1 0 1 ** 134 02 ** 0 1 0 1 1 **

234 01 ** 0 0 1 i 1 **

## I0 ##

### Total(5, 2): 15 ###
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/*

#ifdef Q

#define COLUMN 5

#else

#define COLUMN 1

#endif

Cosmetic adjustments */

/*

#define DIM 15

#define VDIM i0

Problem Size

/* maximum size of N P */

/* maximum no. of sections in each _ */

*/

/*

#define BU(Z2, ZI)

#define ml

#define m2

#define ddAbb

#define m3

#define m4

#define ddAbb2

Useful Macros */

for (i _ 0; i < DIM; i++) Zl[i] = Z2[i]

for (i=0; i < rr; i++) dd[i+used] = bb[used+D_aray[i]]

for (i = 0; i < rr + used; i++) bb[i] -- dd[i]

ml; m2; fill_up(N_P, used + rr, bb)

for (i=0; i < rr; i ++) D[i + used] = B[used+D_aray[i]]

for (i - 0; i < rr + used; i ++) B[i] = D[i]

m3; m4; fill_up(n_p, used + rr, B)

/*

int AA[VDIM] [DIM], BB[VDIM] [DIM],

CC [VDIM] [DIM], DD [VDIM] [DIM] ;

int new A[DIM], A[DIM], B[DIM],

C[DIM], D[DIM];

int E[DIM], F[DIM];

int stack[VDIM] [2] ;

int n__p, r, n_s;

long int total, sub_total;

main()

(

printf("input n p, n_s\n") ;

Global Variables

/* used for solving config2_ */

/* used for solving config_ */

*/

/* used for sectioning each _ */

/* main program */
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scanf("%d %d", &n_p, &n s);

sub total - total - 0;

total = sub total - 0;

generateD(n_s, I, n__p); /* generate the _'s */

if (sub_total > (long) 0) printf("## %id ##", sub_total);

total +z sub_total;

printf("\n### Total(%d, %d) : %id ###", n_p, n_s, total);

/* first input N_P and N_S */

/* Initializations */

generateD(dim, start, left)

int dim, start, left;

(

int i, result, flag;

flag - 0; if (left < start) return(0);

else {

if (dim -- i) (

if (sub_total > 0) printf("## %id ##", sub total);

total += sub__total; sub_total - (long) 0;

A[n_s - dim] i left;

printf("kn##type: ") ; display(stdout, n_s,A) ; printf("\n") ;

new vals () ;

for (im 0; i < DIM; i++) B[i] - i;

gen(r, C, 0) ;

return (I) ;

} else do (

A[n_s - dim] - start; result - generateD(dim-1 , start, left-start);

if (result) flag = i; ++start;

} while (result) ;

};

return (flag) ;

}

gen(a_pos, ar, used)

int a_pos, ar[], used;

(

int i, num, count, sS_pos;

ss_.pos - a__pos;

num= new A[--ss_pos];

configure_(0, 0, n_.p- used, num, ar, a_pos-l, used);

configure_(start val, start_pos, nn, rr, D_aray, a pos, used)



int start_val, start_pos, nn, rr, D_aray[], a pos, used;

{

int i, num, b[DIM];

A.9

if (start_pos --- rr - i) {

while (start_val < nn) {

D_aray[start_pos] = start val++;

#ifdef G

BU(B,b) ; ddAbb2;

#endif

if (a_pos) {

gen(a pos, &D_aray[rr], used + new_A[a_pos]) ;

} else {

if (n_s == r) report(D, new_A, r);

else new section(0);

);

#ifdef G

BU (b, B) ;

#endif

};

return (I) ;

} else while (nn > start_val) {

D_aray[start_pos] - start_val++;

#ifdef G

BU (B, b) ;

#endif

configure_(start_val, start_pos + I, nn, rr, D_aray, a pos, used);

#ifdef G

BU (b, B) ;

#endif

);

}

new vals ()

(

int i, old, new;

old - new = -i; r i 0;

for (i = 0; i < n_s; i++) {

new - A[i] ;

if (old == new) {

stack[r-l] [i]++; stack[r-l] [0] += new;

new_A[r-l] += new;

} else {

stack[r] [i] = l; stack[r] [0] - new;
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new_Air++] -- new;

};

old = new;

};

fill_up(nn, rr, array)

int nn, rr, array[] ;

{

int i, index;

index -- rr;

for (i I O; i < nn; i++) if (absent(i, array, rr)) array[index++] I i;

}

/* fill up rest of the array */

/* with no.s not already there */

report(ar, in, the_r)

int ar[], in[];

{

int i, j, u;

sub total++;

#ifdef G

#ifdef Q

u - O; if (I != sub total%COLUMN) printf(" ");

for(i = the_r-l; i >= O; i--) {

if (i !I the_r-l) printf(" ");

display(stdout, in[i], &ar[u]); u +=in[i];

};

#endif

#ifdef P

#ifdef Q

printf(" ** ");

#endif

u - O;

for(i - the_r-l; i >I O; i--) {

for(j = O; j < in[i]; j++) F[ar[j+ u]] - i;

u +-in [i] ;

};

for(j m O; j < n__p; j++) printf("%d ", F[j]);

#ifdef Q

printf("**");

/* display the particular configuration */

/* increment no. of configurations found */

absent(element, array, rr) /* check whether a particular value */

int element, array[], rr; /* is missing in the "array" */

{

int i;

for (i- O; i < rr; i++) if (element 11 array[i]) return(O); return(l);

)



#endif

#endif

#ifdef Q

if (0 == sub total%COLUMN) printf("\n");

#else

printf ("\n") ;

#endif

#endif

}

A. 1I

display(where, end, array) /* Low level Display routine */

int end, array[];

FILE *where;

{ int i; for (i - 0; i < end; i++) fprintf(where, "%d", array[i]);}

new_section (level)

int level ;

{

int i, size, N_P, R;

N P = stack[level] [0]; R = stack[level] [i];

size - N_P/R;

for (i -- 0; i < R; i++) AA[level] [i] z size;

for (i- 0; i < DIM; i++) BB[level] [i] = i;

if (N_P == R) {

for (i - 0; i < DIM; i++) DD[level] [i] - i;

if (level == r-l) xreport(); else new_section(level+l);

} else {

gen3(R, CC[level], 0, AA[level], BB[levell, DD[level], level, N_P, R);

};

)

gen3(a_pos, ar, used, aa, bb, dd, level, N_P, R)

int a_pos, ar[], used, aa[], bb[], dd[], level, N_P, R;

{

int i, num;

num = aa [--a_pos] ;

configure2_(0, 0, N__P -used, "num, ar, a_pos,

used, aa, bb, dd, level, N_P, R) ;

}

configure2_(start_val, start_pos, nn, rr, D_aray, a_pos,

used, aa, bb, dd, level, N_P, R)

int start__val, start_pos, nn, rr, D_aray[], a_pos,
used, aa[], bb[], dd[], level, N_P, R;

{
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int i, num, b[DIM];

if (start_pos .m rr - i) (

while (start_val < nn) {

D_aray[start_pos] z start_val++;

#ifdef G

BU(bb,b) ; ddAbb;

#endif

if (a_pos) {

gen3(a_pos, &D_aray[rr], used + aa[a_pos],aa,bb, dd, level,N_P, R) ;

} else {

if (level z. r-l) xreport () ; else new_section (level+l) ;

};

#ifdef G

BU (b, bb) ;

#endif

);

return (i) ;

} else while (nn > start_val) {

if (start_pos -- 0) {

D_aray [start_pos++] = start_val++;

if (start_.pos --- rr - I) {

while (start_val < nn) {

D_aray[start_pos] - start_val++;

#ifdef G

BU(bb,b) ; ddAbb;

#endif

if (a_pos) {

gen3(a_pos, &D_aray[rr], used + aa[a_pos],aa,bb, dd, level,N_P,R) ;

} else {

if (level -- r-l) xreport() ; else new_section(level+l) ;

};

#ifdef G

BU (b, bb) ;

#endif

};

return(1) ;

} };

D_aray[start_.pos] - start__val++;

#ifdef G

BU (bb, b) ;

#endif

configure2_(start_val, start_pos + I, nn, rr,

D_aray, a_pos, used, aa, bb, dd, level, N_P, R) ;

#ifdef G



BU(b, bb) ;
#endif

);

}

xreport ()

{

int i, u, lev, j;

#ifdef G

lev _ u = 0;

for (i = 0; i < r; i++) {

for (j = 0; j < stack[lev] [0]; j++) E[j+u] = D[DD[Iev] [j] + u];

u+-- stack[lev++] [0];

};

#endif

report(E, A, n_s) ;

)

A. 13
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II. Listing of Benchmark h Pipe-line

The f'a'st benchmark is made up of three player types:

"Stage" defines the operation of players <2> to <8>. They have different service times

for three request types. After processing each request, they propagate the request to the

next stage. It should be noted that requests are routed to the two acquaintances

"downstream" alternately.

(DefPlayer

(MES__A MES B MES C I D I S)

(nxt_stg_l nxt_stg 2 nxt_stg)

(dur_a dur_b dur_c)

(I_D (record dur_a dur_b dur_c))

(I_S (record nxt_stg_l nxt_stg_2)

(setq nxt_stg nxt_stg_l))

(M_.S_A

(run dur a)

(post nxt_stg MES_A)

stage

(if (= nxt_stg_l nxt_stg)

receiver

(setq nxt_stg nxt_stg_2)

(setq nxt_stg nxt_stg_l) ) )

(MES_B (rUn dur_b) (post nxt_stg MES_B)

(if (= nxt_stg_l nxt_stg)

(setq nxt stg nxt_stg_2)

(setq nxt stg nxt_stg_l)))

(MESS (run dur_c) (post nxt_stg MES_C)

(if (= nxt stg_l nxt_stg)

(setq nxt_stg nxt_stg_2)

(setq nxt stg nxt_stg_l))))

A"pipe-line stage"

It understands 5 message types

acquaintances "downstream"

Service times for different requests

Init: record different service times

Init: record alternative acquaintances

Set acquaintance to receive next

Request type "MESA" received

Execute for that amount of time

Pass same type of request to next

Set other acquaintance as next

Same for "MES_B"

Same for "MES_C"

"Last_stage" defines the operation of player <9>. It's main function is to terminate

simulation after all requests are received and processed.

(DefPlaye= _ The last "pipe-line stage"

(MES._A MES B MES.C "['NIT}
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(dur_a durb dur_c my_Count)

()

(INIT (record dur_a dur_b dur c

msg. count

(repeat my_Count

(wait MES_A) (rUn dur_a)

(wait MES_B) (run durb)

(wait MES_C) (E%U_ dur_c) )

my_Count) Record service times and total

Receive all requests generated at first

stage

(ter_ninate)) ) Terminate simulation/execution

"Firststage" (i.e. Player <1>) carries out the initialization procedures (such as setting

up the configuration of the pipe-line) and generate the appropriate number/type of requests.

The first stage (Player <1>)(DefPlayer _L%L=_

(MESA MES_B MES_C INIT...)

(da db de...)

(... t2 t3...)

(INIT

(repeat myCount

(run da) (post t2 MES__A)

(run db) (post t2 MES_B)

(run dc) (post t3 MES C))))

Generate a number of requests

and propagate them "downstream';

4l

• !

|
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III. Listing of Benchmark H: Divide-and-conquer

The second benchmark is also made up of three player types:

"Root" (i.e. Player <1>) is the "root" of the tree from which requests are generated.

(DefPlayer root The 1st level of the tree

(INIT...)

(left_child right_child... )

(dl d2 d3 d4 no of req duration)

(TNIT ...

(repeat no of req (run duration)

(post left_child REQUEST dl d2)

(post right_child REQUEST d3 d4)

(wait ack) (wait ack)

(z_un duration) )

(terminate)) )

requests

"Level2" defines the operation of players <2> and <3>. They have different service

times for three request types. After receiving a request, they propagate the request to

players at the next level and block to wait for all their replies before replying to their parent.

(DefPlayer level2

(INIT REQUEST)

(parent child_l child_2 child_3)

(dur_a dur_b)

(INIT . . . )

(REQUEST (record dur_a dur_b)

(run dur_a)

(post child_l REQUEST)

(post child_2 REQUEST)

(pOSt child_3 REQUEST)

(wait ACE) (wait ACK) (wait ACE)

(run dur_b)

(post master ACK)))

Generates "no of req" requests

...to left child

... and rightchild

Wait for their completion

Executes for some time

Terminates after "no_of_req"

Initialization

Request received

Execute for some time

Distribute requests to children

Wait for all their replies

Execute for some more and...

,..reply

The 2nd level of the tree
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"Leaf" def'mes the operation of players <4> to <9>. After receiving a request, they carry

out some processing before replying to their parent.

(DefPlayer leaf

(REQUEST)

()

(dur)

(INIT (record dur) )

(REQUEST

( run dur)

(reply ACE) ) )

The 3rd level of the tree

Initialization: record execution time

"Request" received

Execute...

...then reply


